Dual Function for U2AF 35 in AG-Dependent Pre-mRNA Splicing
نویسندگان
چکیده
منابع مشابه
Signal-Regulated Pre-mRNA Occupancy by the General Splicing Factor U2AF
Alternative splicing of transcripts in a signal-dependent manner has emerged as an important concept to ensure appropriate expression of splice variants under different conditions. Binding of the general splicing factor U2AF to splice sites preceding alternatively spliced exons has been suggested to be an important step for splice site recognition. For splicing to proceed, U2AF has to be replac...
متن کاملRNAcatalyses nuclear pre-mRNA splicing
In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a dynamic machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, after the discovery of self-splicing group II intron RNAs, the snRNAswere proposed to catalyse splicing. However, no definitive evidence for a role of either RNAor protein in catalysis by the spliceosome has been repor...
متن کاملSTABILIZED1 Modulates Pre-mRNA Splicing for Thermotolerance.
High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing ac...
متن کاملAG-dependent 3′-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon
In pre-mRNA splicing, a conserved AG/G at the 3'-splice site is recognized by U2AF(35). A disease-causing mutation abrogating the G nucleotide at the first position of an exon (E(+1)) causes exon skipping in GH1, FECH and EYA1, but not in LPL or HEXA. Knockdown of U2AF(35) enhanced exon skipping in GH1 and FECH. RNA-EMSA revealed that wild-type FECH requires U2AF(35) but wild-type LPL does not....
متن کاملSerine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing.
Two distinct functions have been proposed for the serine-arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein-protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular and Cellular Biology
سال: 2001
ISSN: 0270-7306,1098-5549
DOI: 10.1128/mcb.21.22.7673-7681.2001